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Abstract
It is commonly accepted that the requirements for
maintenance and diagnosis should be considered at the
earliest stages of design. For this reason, methods for
analysing the diagnosability of a system and determining
which instrumentation is needed to achieve the desired level
of diagnosability, are highly valued. This paper presents a
method for:

•  Assessing the degree of diagnosability of a system, i.e.
given a set of sensors, which faults can be discriminated?

•  Characterising and determining the minimal additional
sensors which guarantee a specified degree of
diagnosability.

This analysis of a given system can be performed at the
design phase, allowing one to determine the which sensors
are needed, or the trade off if not installing certain sensors.

This method has been applied to several subsystems of a
General Electric Frame 6 gas turbine owned by National
Power CoGen, UK in the framework of the European
Community Trial Application project, TIGER Sheba. This
paper focuses on the gas fuel subsystem for illustrating the
method. 

Introduction

It is commonly accepted that diagnosis and maintenance
requirements should be accounted for at the very early
design stages of a system.  For this purpose, methods for
analysing properties such as diagnosability and
characterising the instrumentation system in terms of the
number of sensors and their placement are highly valuable.

                                    
+ LEA-SICA is a joint European Laboratory.

There is hence an increasing amount of work dealing with
this issue, both in the DX community (Console et al. 2000)
or in the FDI community (Gissinger et al. 2000)

This paper proposes a method for:

• assessing the diagnosability degree of  a system, i.e.
given a set of sensors, which are the faults that can be
discriminated,

• characterising and determining the Minimal Additional
Sensor Sets (MASS) that guaranty a specified
diagnosability degree.
The analysis for a given system can be performed at the

design phase, allowing one to determine the alternative
MASS, starting from no sensors at all or during the
operational life of the system, allowing one to determine
the alternative MASS, starting from the set of sensors that
are already installed.

The main ideas behind the method are to analyse the
physical model of a system from a structural point of view.
This structural analysis is performed following the
approach by (Cassar & Staroswiecky, 1997). It allows one
to derive the Redundant Relations, i.e. those relations
which produce the Analytical Redundant Relation (ARR)
(Cordier et al. 2000).
 Our contribution builds on these results and proposes to
derive the potential additional redundant relations resulting
from the addition of one sensor. In a first step, all the
possible additional sensors are examined one per one and a
Hypothetical Fault Signature Matrix is built. This matrix
makes the correspondence between the additional sensor,
the resulting redundant relation and the components that
may be involved. The second step consists of extending the
Hypothetical Fault Signature Matrix in an Extended
Hypothetical Fault Signature Matrix that takes into



account the addition of several sensors at a time. This latter
matrix summarises all the required information to perform
a complete diagnosability assessment, i.e. to provide all the
MASSs which guaranty the desired discrimination level.

This work is related to (Maquin et al., 1995; Carpentier
et al., 1997). Similarly, it adopts the single fault and
exoneration working hypothesis in the sense that it is
assumed that a faulty component always manifests as the
violation of the redundant relations in which it is involved.
However, unlike (Maquin et al., 1995) that only deals with
sensor faults, our approach allows us to handle faults
affecting any kind of component.

This method has been applied to several subsystems of a
General Electric (GE) Frame 6 gas turbine owned by
National Power installed at their site of Aylesford,
England. The work was performed in the framework of the
European Trial Applications TIGER SHEBA Project. This
paper focuses on the Gas Fuel Subsystem (GFS) for
illustrating the method. The results obtained for this
industrial system are presented and discussed.

The GE Frame 6 Gas Turbine at Aylesford

National Power is one of the major electricity generating
companies in the UK and its CoGen wholly owned
subsidiary specialises in gas turbine driven power stations
providing electricity and steam. Their Aylesford Newsprint
site, located just south-east of London generates 40 MW of
electricity for the national grid as well as providing steam
to an adjacent paper re-cycling plant. The gas turbine is a
General Electric Frame 6 and has been monitored by the
TIGER™ software for over three years. National Power
CoGen are constantly looking for ways to reduce cost and
increase efficiency and hence agreed to be the host user for
the European Community supported, Tiger Sheba Trial
Application project. They were experiencing many
problems with the gas and liquid fuel supply systems
which are among the most critical. Although the TIGER™
software provides diagnostics for these subsystems, the
techniques and sensors available limited the diagnosis. A
major goal of the Sheba project was to improve the
diagnosis of these subsystems.

The original Tiger ESPRIT project (Milne et al. 1994)
(Milne et al. 1996) has been developed into the TIGER™
gas turbine condition monitoring software product.
Currently over 25 systems are installed on 5 continents,
include 4 systems on offshore oil platforms. TIGER™  has
consistently provided substantial benefits to its users and is
now a mature product. The first prototype TIGER
installation included the Ca~En qualitative model based
diagnosis system (Travé-Massuyès and Milne 1997), but
this was not deployed in the first commercial installations
of TIGER. The Sheba project brought Ca~En back into
TIGER with a full scale demonstration of its capabilities
and benefits on a Frame 6 gas turbine. This improved
TIGER's capabilities by a more precise prediction of
expected behaviour (from qualitative prediction) and the
addition of model based fault isolation to complement the

existing rule based diagnosis techniques (Milne and Nicol
2000).

Shortly after the project started, it became clear that the
sensors which were installed would limit the diagnosis.
Hence work was begun to understand what we were
missing and gains that could be made from additional
sensors. Although this problem is discussed in the context
of a specific site, it is a widespread important issue in many
industries.

Gas Fuel Subsystem
The main components of the GFS are two actuators: the
Stop Ratio Valve (SRV) and the Gas Control Valve
(GCV). These valves are connected in series and control
the flow of gas fuel that enters in the combustion chambers
of the turbine. The first of these valves, the SRV, is
controlled by a feedback loop that maintains constant the
gas pressure at its output (pressure between the two valves)
fpg2. This pressure being constant, the gas fuel flow is just
determined by the position of the GCV. Hence, the GCV is
a position controlled valve.

The flow diagram of the GFS is given by the figure 1
below.

Figure 1 – Flow diagram of the GE Frame 6 turbine GFS

Notations: The symbols p and q represent pressures and
flows, respectively. The variables that are monitored by the
TIGER™ system are given by their TIGER name.
Variables are denoted by low case letter symbols whereas
components are denoted by capital letter symbols.

For the GFS, the user's specifications state to consider
faults on components: GCVm, GCVh, SRVm, SRVh,
injectors and some transducers. The set of faults is hence
given by FGFS={GCVm, GCVh, SRVm, SRVh, Injt, Tfsg,
Tfsgr, Tfqg, Tcpd}.

A structural approach for analytical
redundancy

The model of a system can be defined as a set of equations
(relations) E, which relate a set of variables X∪ Xe, where
Xe is the set of exogenous variables. In a component-
oriented model, these relations, called primary relations,
are matched to the system’s physical components. The
structure of a model can be stated in a so-called Structural
Matrix.

Definition 1 (Structural Matrix) Let’s define a matrix
SM whose rows correspond to model relations and



columns correspond to model variables. The entries of SM
are either 0 or X: sij is X if and only if the variable in
column j is involved in the relation in row i, it is 0
otherwise. Then, S is defined as the model Structural
Matrix.

From the model structure, it is possible to derive the
causal links between the variables (Iwasaki and Simon,
1986)(Travé-Massuyès and Pons, 1997). These links
account for the dependencies existing among the variables.
Given a self-contained system Σ=(E,X∪ Xe) formed by a
set of n equations (relations) E in n variables X and the
context of the system given by the set of exogenous
variables Xe, the problem of causal ordering is the one of
determining the dependency paths among variables which
would indicate in which order every equation should be
used to solve successively for the n variables.

The problem of computing the causal structure can be
formulated in a graph theoretic framework; it is then
brought back to the one of finding a perfect matching in a
bipartite graph G=(E ∪ X, A) where A is the set of edges
between variables and equations (Porté et al. 1986). The
system being self-contained, the perfect matching
associates one variable from X to one equation from E.

A similar method is used in the FDI community to obtain
a so-called Resolution Process Graph (RPG). (Cassar and
Staroswiecki 1997) have shown that this graph can be used
to derive the Redundant Relations within a structural
analysis approach.

Given a system Σ=(E,X∪ Xe), the set of variables X can
be partitioned as X=U∪O, where O is the set of observed
(measured) variables and U  is the set of unknown
variables. Then, the structural approach of (Cassar and
Staroswiecki 1997) is based on determining a perfect
matching in the bipartite graph G=(E∪U, A), i.e. between
E and U. Given the perfect matching C, the RPG is the
oriented graph obtained from G=(E∪U, A) by orienting the
edges of A from xi towards ej if a(i,j) ∉  C and from ej
towards xi if a(i,j) ∈ C.

Obviously, the number of relations in E  is greater or
equal to the number of unknown variables. If it is greater,
then some relations are not involved in the perfect
matching. These relations appear as sink nodes, i.e. without
successors, in the RPG.

Definition 2 (Redundant Relation) A Redundant
Relation (RR) is a relation which is not involved in the
perfect matching in the bipartite graph G=(E∪U, A).

RRs are not needed to determine any of the unknown
variables. Every RR produces an Analytical Redundant
Relation (ARR) when the unknown variables involved in
the RR are replaced by their formal expression by
following the analytical paths defined by the perfect
matching. These paths trace back variable-relations
dependencies up to the observed variables. An ARR hence
only contains observed variables and can be evaluated from
the observations (Cordier et al., 2000).

GFS component-oriented model
Table 1 below provides the component-oriented model of
the GFS. For every component, the behavioural relations
refer to generic component models (Travé-Massuyès and
Escobet, 1995). The transducers are not included.

Without loss of generality, the pressures at a given
junction and the flows in a given branch have been made
equal and renamed as a single variable making use of the
pressure equality equation of a junction model and of the
flow balance equation law for every component,
respectively.

List of components: GCVh - Gas Control Valve
(hydraulics); SRVh - Stop Ratio Valve (hydraulics);
GCVm - Gas Control Valve (mechanics); and SRVm - Gas
Control Valve (mechanics).

Table 1 – GFS component-oriented model

Remark: GCVm and SRVm include the controller as
well as the Control Oil Supply valve.

Redundant relations for the GFS
The structural matrix of the GFS model is given in table 2.

Table 2 - GFS structural matrix

In table 2, a shaded column indicates that the variable is
exogenous. Although some internal variables are measured,
let us perform the structural analysis as if we were at the
design stage, i.e. as if the set of sensors was S=∅. The GFS
is hence characterised by E={ri/i=1,...,11}, Xe={p1, cpd,



96hq1, fsrout, fpgrout}, X=U∪O where U={fpg2, p3, fqg,
q2, q3, q4, fag, fagr} and O=∅.

Following (Cassar and Staroswiecky 1997), we
determine a perfect matching between E and U. The entries
involved in the perfect matching are indicated by circles.
The structural matrix reordered with respect to the perfect
matching is given in table 3. The exogenous variables Xe

can be ignored and do not appear in the reordered matrix.

Table 3 – GFS reordered structural matrix

The reordered matrix makes clear that there is a redundant
relation: r5 (it is not needed to determine any of the
unknown variables).

A structural approach for diagnosability and
partial diagnosability

In this section, a method for determining the diagnosability
degree of a system and the potential MASS is presented.
The structural analysis results from (Cassar and
Staroswiecki 1997) presented in the last section constitute
the starting point of our method. The analysis can be
performed at the design stage, starting from no sensors at
all (S=∅), to design the instrumentation system, or during
the operational life of the system, allowing us to determine
the alternative MASS to be added to the set of  existing
sensors.

Let’s first introduce a set of definitions which are used in
the following.

Definition 3 (Diagnosability) (Console et al. 2000) A
system is diagnosable with a given set of sensors S if and
only if (i) for any relevant combination of sensor readings
there is only one minimal diagnosis candidate and (ii) all
faults of the system belong to a candidate diagnosis for
some sensor readings.

The definition above from (Console et al., 2000),
characterises full diagnosability. However, a system may
be partially diagnosable.

Definition 4 A fault F1 is said to be discriminable from
a fault F2 if and only if there exist some sensor readings
for which F1 appears in some minimal diagnosis candidate
but not F2, and conversely.

Given a system Σ  and a set of faults F , the
discriminability relation is an order relation which allows
us to order the faults: two faults are in the same D-class if
and only if they are not discriminable. Let’s note D the
number of such classes.

Partial diagnosability can now be characterised by a
Diagnosability Degree.

Definition 5 (Partial Diagnosability — Diagnosability
Degree) Given a system Σ,  a set of sensors S, and a set of
faults F, the diagnosability degree d is defined for the
triple (Σ, S, F) as the quotient of the number of D-classes
by the number of faults in F, i.e. d=D/Card(F).

Proposition 1 The number of D-classes D of a (fully)
diagnosable system is equal to the number of faults,
Card(F).

A fully diagnosable system is characterised by a
diagnosability degree of 1. A non-sensored system is
characterised by a diagnosability degree of 0.

Definition 6 (Minimal Additional Sensor Sets) Given a
partially diagnosable triple (Σ, S, F), an Additional Sensor
Set is defined as a set of sensors S such that  (Σ, S∪S, F) is
fully diagnosable. A Minimal Additional Sensor Set is an
additional sensor set S such that ∀S ‘∈ S, S  ‘ is not an
additional sensor set.

Our method is based on deriving the potential additional
redundant relations resulting from the addition of one
sensor. All the possible additional sensors are examined
one by one and a Hypothetical Fault Signature Matrix is
built. This matrix makes the correspondence between the
additional sensor, the resulting redundant relations and the
components that may be involved. This is obtained from an
AND-OR graph which is an extension of the RPG. The
second step consists in extending the Hypothetical Fault
Signature Matrix in an Extended Hypothetical Fault
Signature Matrix  that takes into account the addition of
several sensors at a time. This later matrix summarises all
the required information to perform a complete
diagnosability assessment, i.e. to provide all the MASSs
that guaranty full diagnosability.

AND-OR Graph
Our method stands on building an AND-OR Graph by
extending the RPG with the hypothetical sensors. The
AND-OR Graph states the flow of alternative computations
for variables, starting from exogenous variables. To solve a
relation ri for its matched variable, all the ri’s input
variables have to be solved (AND). An input variable may
have several alternative computation pathes (OR).

The AND-OR graph is made of alternated levels of
variables and relations. A variable node is associated an
OR, for the alternative ways to obtain its value, whereas a
relation node is associated an AND, meaning that several
variables are necessary to instantiate the relation. Every
relation is labelled with its corresponding component. The
exogenous variables are indicated by a star. The
hypothetical sensors are noted S(.).The sensors that can be



faulty (Txxx) have been marked. The AND-OR graph for the
GFS is given in Figure 2.

Figure 2 – AND-OR Graph for the GFS

Hypothesising sensors: one at a time
In the FDI terminology, the fault signature matrix

crosses RRs (or ARRs) in rows and (sets of) faults in
columns (Cordier et al., 2000). In this matrix, the
interpretation of some entry si j  being 0 is that the
occurrence of the fault Fj does not affect ARRi, meaning
that ARRi is satisfied in the presence of that fault. sij = 1
means that ARRi is expected to be affected by fault Fj, but
it is not guaranteed that it will really be (the fault might be
non detectable by this ARR).

The ARR-based exoneration assumption is generally
adopted in the FDI approach, meaning that a fault is
assumed to affect the ARRs in which it is involved. Hence,
sij = 1 is interpreted as ARRi is violated in the presence of
fault Fj.  Our approach adopts this assumption as well.

Definition 7 (Hypothetical Fault Signature (HFS)
Matrix)  The Hypothetical Fault Signature Matrix is
defined as the set of fault signature that would result from
the addition of one sensor, this sensor among  the set of all
possible sensors.

The HFS matrix is determined by assuming that one
more sensor is added to the existing ones. Every line of the
matrix corresponds to an hypothesised additional sensor
(H-Sensor), reported in the first column. The result of
adding one sensor is to provide one more redundant
relation (H-RR for hypothetical RR), which corresponds to
the relation matched (by the perfect matching) to the

variable sensored by the H-Sensor. The resulting H-RR is
given in the second column.

Zero entries are interpreted as for the fault signature.
Now, two types of non zero entries exist in the HFS matrix:
“1” means that the component (fault) i s necessarily
involved in the corresponding H-RR and “x” means that
the component may or may not be involved, depending on
whether other sensors are added.

For a given unknown variable, the HFS matrix indicates
that there are two ways to determine this variable: its H-
sensor or the computation tree for solving the
corresponding H-RR. The computation tree is a subgraph
of the AND-OR Graph. Its root is the unknown variable
and its branches trace back the variable-relation
dependencies down to the exogenous variables (and
eventually the H-sensored variable). The HFS matrix entry
values are obtained from the set of components whose
corresponding relations take part in the computation tree.
At this stage, the other H-Sensors are used to decide
whether the entry is “1” or “x”.

HFS matrix of the GFS. The HFS matrix for the GFS
application is given in Table 4. Note that an hypothetical
sensor on q4  has not been considered because it is
physically impossible to measure q4.

Table 4 – HFS matrix of the GFS

As an example, let’s consider the row corresponding to
H-sensored fag. The computation tree is given in Figure 3.
The components involved are GCVm, which receives a “1”
because it is matched to the H-RR (r7) itself, and Tfsg which
receives a “x”. Indeed, the value of fsg may be obtained
from the H-Sensor, involving Tfsg, or from r9 which is also
associated GCVm.

Figure 3 – Computation tree for fag



Hypothesising sensors: several at a time
Given that some non-zero entries of the HFS matrix may
be “x”, this means that every H-RR in the HFS matrix can
have several instances depending on the whole set of
additional sensors, every instance being conditioned by a
given set of sensors. The isolability properties conditioned
by the set of sensors for the whole system can be derived
from the Extended HFS matrix (EHFS matrix) which states
all the possible instances of the H-RRs in the HFS matrix.

The EHFS can be generated from the OR-AND graph,
by analysing all the alternative computation trees.

The different instances of a H-RR (IRR as Instantiated
RR) are obtained from the AND-OR graph by following
the alternative paths for obtaining its associated variable.
When a relation is in the path, its corresponding component
receives a “1” instead of the “x”. When a sensor is in the
path, it is recorded in a Sensor Conditions column. This is
summarised in the EHFS matrix.

Extended Hypothetical Fault Signature Matrix for the
GFS. The following table provides the partial EHFS matrix
for the IRR corresponding to the H-RR r3.

Table 6 – (Partial) EHFS matrix for the GFS

The full EHFS matrix contains 61 IRRs and summarises all
the required information to perform a complete
diagnosability assessment.

Diagnosability assessment

The EHFS matrix allows us to exhaustively answer the
question: “Which additional sensors are necessary and
sufficient (Minimal Additional Sensor Sets) to guaranty full
diagnosability (discrimination between all the faults)?”.

Component involvement
Component involvement is defined as follows:

Definition 8 (Component involvement) The rows of the
fault signature matrix of a system (Σ, S, F) and similarly,
the rows of the EHFS matrix are defined as component
involvement vectors. In the EHFS matrix, row i is the
component involvement vector of IRRi.

Corolary 1 Under the ARR-based exoneration
assumption, two IRRs that have the same component
involvement vector have the same fault sensitivity. The
proof is trivial and is omitted.

The IRRs can be grouped in equivalence classes
corresponding to the same component involvement vector,
i.e. the same rows in the EHFS matrix.

Alternative Fault Signature Matrices
Let’s first recall the definition of the structural rank (or
generic rank) of a matrix.

Definition 9 (Structural rank) (Travé et al. 1989)
Consider a structured matrix M with _ arbitrary entries.
Then the parameter space R_ is associated with M such
that every data point d∈Rν defines a matrix Md=M(d).
Conversely, a structured matrix M is associated with every
matrix Md such that Md=M(d) for d∈R_. The structural
rank of Md or M is defined as:
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Then we have the following result:

Proposition 2  Under the ARR-based exoneration
assumption and given a partially diagnosable triple (Σ, S,
F), the number of D-classes of (Σ, S, F) is given by the
structural rank (Travé et al., 1989) of  its fault signature
matrix. From the above result and definition 5, one can
derive the diagnosability degree of (Σ, S, F).

Definition 10 (Alternative Fault Signature Matrices)
Given a set of faults F of cardinal n, the Alternative Fault
Signature (AFS) Matrices are given by all the possible X×n
matrices composed by the component involvement vectors
corresponding to RRs, i.e. from the actual fault signature
matrix, and the addition of a selection of component
involvement vectors from EHFS (corresponding to IRRs),
where X is ≥ to the number of actual RRs.

We can now state the following result:

Proposition 3  Under the ARR-based exoneration
assumption and given a system(Σ, S, F) with Card(F)=n,
the maximal diagnosability degree is obtained for the
maximal structural rank among the AFS matrices.

Proposition 4 Under the same assumptions as
Proposition 3 an given a maximal rank fault signature
matrix, the corresponding MASS is obtained as the
conjunction of the Sensor Conditions associated to the
IRRs belonging to this FS matrix.

Due to space constraints, the proofs are not included.

Diagnosability degree using the GFS available
sensors
For the GFS application, the first question that can be
answered is: which are the components that can be
discriminated using the currently available sensors, i.e.
which is the diagnosability degree of the actual system?

Component involvement. The set of actual sensors on the
GFS is SGFS={fpg2, fqg, fsg, fsgr}. Given the available
sensors, 19 IRRs of the EHFS matrix turn into real RRs.
The component involvement vectors are given in Table 7
with their corresponding RRs. 15 different component
involvement vectors are obtained.



Component involvement Equivalence class
V1=(001000100) R1={r8}
V2=(100001000) R2={r7}
V3=(001100000) R3={r11}
V4=(010111011) R4={r66}
V5=(011111011) R5={r67,r518,r520}
V6=(110110011) R6={r68}
V7=(111110011) R7={r69,r522}
V8=(000100110) R8={r51}
V9=(001100010) R9={r52,r54}
V10=(001100110) R10={r53}
V11=(010111111) R11={r517}
V12=(011111111) R12={r519}
V13=(110110111) R13={r521}
V14=(111110111) R14={r523}
V15=(111110011) R15={r524}

Table 7 – Component involvement vectors for
(GFS, SGFS, FGFS)

The structural rank (Travé & Titli, 1985) of the fault
signature matrix FS=[V1T,....,V15T]T is 7, which indicates
that only 7 components can be discriminated. A closer look
makes clear that columns 2, 5 and 9 of FS are identical,
indicating that GCVh, Injectors and Tcpd cannot be
discriminated.

The conclusions are hence that the sensors installed on
the Aylesford turbine GFS allow one to discriminate
between the following components: GCVm, SRVm, SRVh,
T f s g, T fsgr, Tfqg and {GCVh, Injt, Tcpd}. The actual
diagnosability degree of (GFS, SGFS, FGFS) is 3/4.

Sensors for achieving maximal diagnosability in
the GFS
Component involvement for discriminating between
{GCVh, Injectors, Tcpd}. Let us now consider the second
question: which are the necessary and sufficient additional
sensors that guaranty maximal diagnosability, i.e. maximal
discrimination between the 9 faults?

Given the results of the previous section, obtaining the
maximal discrimination between the 9 faults comes back to
obtaining the maximal discrimination between {GCVh,
Injt, Tcpd}. The different component vectors with respect to
GCVh, Injt and Tcpd and their corresponding IRRs are:

GCVm, Injt and Tcpd

Component
involvement

Equivalence class

V16=( -0 - -0 - - -0 ) R16={r10 1,r102,r91,r92,r61, r
5 5, r5 6,
r5 7,r58}

V17=( -0 - -1 - - -1 ) R17={r11}

V18=( -1 - -1 - - -1 ) R18={r1 2,r13,r14,r15,r16,r46,
r4 7, r3 5, r3 6, r37, r3 8}

V19=( -1 - -0 - - -0 ) R19={r4 1,r42,r43,r44,r45,r31,
r 3 2, r3 3, r3 4, r6 2, r6 3, r6 4, r6 5, r 5

9, r5 1 0, r5 1 1, r5 1 2,
r 5 1 3, r5 1 4, r5 1 5, r5 1 6}

Table 8 – Different EHFS component involvement vectors
with respect to GCVh, Injt and Tcpd

Alternative Fault Signature Matrices. The alternative FS
matrices are given by all the (15+x)×8 matrices composed
by selecting x component involvement vectors from the
EHFS matrix such that the resulting FS matrix has
maximal structural rank. It can be seen from the EHFS that
Injectors and Tcpd cannot be discriminated, because their
involvement in the IRRs is always identical, so the
maximal structural rank for an FS matrix is 8. However,
discrimination can be obtained between GCVh and  {Injt,
Tcpd}. Since the structural rank of the actual fault signature
matrix is 7, it is hence enough to select one appropriate
component involvement vector from the EHFS matrix
(Table 8) to be added to those in Table 7, arising from the
available sensors. Two solutions exist:

Solution(1):  R17

Solution (2): R19

Minimal Additional Sensor Sets.
Solution (1) provides one possible MASS: {S(p3), S(q3)}.
Solution (2) provides 2 possible MASSs: {S(q1), S(q2)},
{S(p3)}.

The conclusion is that adding one sensor on p3  is
necessary and sufficient to obtain full diagnosability in the
Gas Fuel System.

Conclusions

A key issue for practical diagnosis in industry is the trade
off of installing the minimal sensors, but getting a high
degree of fault isolation and diagnosis. In order to keep
costs down, industrial systems are typically configured
with the minimum set of sensors needed for control and
protection. Long experience has shown that this standard
set of sensors creates many limitations on how well faults
can be diagnosed. What industry needs is better
information to base the trade-off decision on. What do I
gain for each possible additional sensor?

In this paper, we have presented a method for showing
what gains in diagnosis can be made with which additional
sensors. This is accomplished by analysing the system
from the model based diagnosis viewpoint, given a set of
faults which it is desirable to diagnose. The approach has
been illustrated through the gas fuel system of a General
Electric Frame 6 gas turbine, based on an actual turbine
being monitored by the TIGER™ software in the UK.

This approach can be very beneficial to industry. By
being able to understand the gains to be made at the cost of
a few more sensors, there is a real chance to instrument
complex systems for not only control, but also diagnosis.
The possible cost savings are substantial, not just from the



direct gains in diagnosis, but in the better design of systems
and the ability to design systems which will be more
robust.
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